3 and 4 .Determinants and Matrices
hard

The number of distinct real roots of the equaiton, $\left|\begin{array}{*{20}{c}}
{\cos \,\,x}&{\sin \,\,x}&{\sin \,\,x}\\
{\sin \,\,x}&{\cos \,\,x}&{\sin \,\,x}\\
{\sin \,\,x}&{\sin \,\,x}&{\cos \,\,x}
\end{array}\right|\,\, = \,\,0$ in the interval $\left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$ is

A

$1$

B

$4$

C

$2$

D

$3$

(JEE MAIN-2016)

Solution

$\begin{array}{*{20}{c}}
{\cos x}&{\sin x}&{\sin x}\\
{\sin x}&{\cos x}&{\sin x}\\
{\sin x}&{\sin x}&{\cos x}
\end{array} = 0$

${R_1} \to {R_1} – {R_2}$

${R_2} \to {R_2} – {R_3}$

$\begin{array}{*{20}{c}}
{\cos x – \sin x}&{\sin x – \cos x}&0\\
0&{\cos x – \sin x}&{\sin x – \cos x}\\
{\sin x}&{\sin x}&{\cos x}
\end{array} = 0$

${C_2} \to {C_2} + {C_3}$

$\begin{array}{*{20}{c}}
{\cos x – \sin x}&{\sin x – \cos x}&0\\
0&0&{\sin x – \cos x}\\
{\sin x}&{\sin x}&{\cos x}
\end{array} = 0$

Expanding using second row

$2\sin x{\left( {\sin x – \cos x} \right)^2} = 0$

$\sin x = 0$ or $\sin x = \cos x$

$x = 0$ or $x = \frac{\pi }{4}$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.